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Chapter 6
Energy Chapter Review

EQUATIONS:

•  WF = F.d   [This is the amount of work a force F does on a body as the body moves over a

distance d.  This definition is applicable as long as both the force and the angle between
the force and displacement are constant.]

•  WF =     F • dr∫    [This is the sum of the differential bits of work force F does on a body moving

between two points over successive, differential path lengths each of which are
characterized by dr.  This definition is always applicable, but is usually used only when
the force is variable, the displacement is along an oddball path, and/or the angle between
the force and displacement varies.]

•  dr   [This is a differential displacement in Cartesian coordinates, or dr = dxi + dyj + dzk,
where i, j, and k are unit vectors.  In polar notation, the radial coordinate is usually the
only one of interest, so the relationship is written as dr = drr, where r is a unit vector in
the radial direction.  There is an additional note at the end of this summary about radial
coordinates.]

•  KE = (1/2)mv2   [This is the amount of kinetic energy an object of mass m has while moving
with velocity magnitude v.]

•  Wnet =   ∆KE    [This is the Work/Energy theorem.  It states that the total work done on an

object is always equal to the change of the object's kinetic energy.]

•  WF = -  ∆U    [The amount of work a conservative force field does on an object moving from point

1 to point 2 in the field is equal to the change of the potential energy function associated
with the force field, as evaluated at points 1 and 2.]

•  
    
U( x ) − U(where force is zero ) = − F • dr

where force is zero

x
∫    [This is the relationship between a

force and its potential energy function.  The evaluation of this integral is the way potential
energy functions are derived.]

•      F = −∇U    [This is the relationship between a potential energy function and the force that
generates it.  The evaluation of the del operator is the way a force function is derived from
its potential energy function.]

•  Ugrav. near earth = mgy   [This is the gravitational potential energy function near the earth's

surface, where y is the distance above an arbitrarily set zero potential energy level.  Note
that this is arbitrary because there is no place on or near the earth's surface where the
gravitational force is zero, hence no preferred spot for the potential energy to be zero.]
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•  Ugrav. anywhere = 
  
−G

m1m2
r

   [This is Newton's most general gravitational potential energy

function.  It is especially useful when far from the earth's surface (i.e., where the

gravitational force is no longer equal to mg, but rather the more precise 
    
G

m1m2

r2 ( − r )).

Note that U is zero at infinity, which means that the potential energy function is derived
assuming the zero potential energy position is at infinity.  The kinds of gravitational
situations in which this force and potential energy function would be useful will be dealt
with later in the course.  They have been introduced here primarily because they are force
and potential energy functions that aren't equal to zero at the coordinate origin.]

•  Fspring = -kxi   [This is the force function for a spring, where k is a spring constant and

Fspring equals zero at x = 0 where the spring is at equilibrium.]

•  Uspring = (1/2)kx2   [This is the potential energy function for a spring, where the zero potential

energy position is at equilibrium at x = 0.]

•    ∑ KE1 + ∑ U1 + ∑ Wextraneous = ∑ KE2 + ∑ U2    [This is the modified conservation of energy

theorem, where the sum of KE1 and U1 is called the total mechanical energy at time 1, the

sum of KE2 and U2 is the total mechanical energy existing within the system at time 2,

and Wextraneous is the total work done BETWEEN times 1 and 2 by any force whose work

hasn't been taken into account by the potential energy functions (remember, potential
energy functions are useful only in that they allow you to determine how much work a
conservative force field does as a body moves from one point to another in the field).]

•  P = W/t   [This is the definition of power, being the amount of work per unit time that a force
provides to a system.  Its units in the MKS system are joules/second, or watts.]

•  Wnormal = 0   [The amount of work a normal force does is always zero because the normal

direction is always perpendicular to the line of motion.]

•  Wfriction = -fD   [As frictional forces are always directed opposite the direction of motion, the

work friction does is always negative and always equals the product of the frictional force
and the TOTAL DISTANCE D over which the force is applied.]

COMMENTS, HINTS, and THINGS to be aware of:

•  Work--what is it?
--Newton observed that a net force acting on a body over a given distance would change the

body's motion.  The two quantities that affect the magnitude of the change are the
magnitude of the force component in the direction of motion and the distance over which the
force acts.  Multiplying those two quantities yields a number that gives us a relative feel
for how much motion change we can expect.  Called work, it is this defined quantity from
which the entire theory of energy begins.
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•  Energy--what is it?
--Objects are said to have energy if they have the ability to do work, either due to the fact

that they are moving (quantified by kinetic energy--the energy of motion), or due to the fact
that their position in a force field will allow them to pick up motion at some time in the
future (quantified by potential energy--the energy of position--this potential to pick up
kinetic energy function can be defined only for so-called conservative force fields).

•  Conservative forces are forces that do work that is path independent.  That is, the amount
of work a conservative force does on a body moving from one point to another in the field is
determined solely by where the endpoints are, not by how far or in what direction(s) the
body traveled in traversing between the points.

•  If you are given a potential energy function and asked to derive its force function,
don't let the derivation scare you.  The partial derivative in a del operator is nothing
more than a derivative taken with respect to one variable at a time.

•  If you are given a force function and asked to derive its potential energy function,
don't let the derivation scare you.  The integral simply determines how much work the
force field does as a body moves from the zero potential energy point (this will normally be
where the force is zero) to an arbitrary point located somewhere out from the origin.

•  The energy approach is a book keeping technique.  What you are doing is keeping track of
the amount of energy of motion (kinetic energy) and energy of position (potential energy)
that a body or system of bodies has at various points in time.

•  Conserved quantities are quantities that do not change with time.  If the mechanical
energy of a system is said to be conserved, that means that the sum of the system's kinetic
and potential energies at any given instant will always add to the same number.

•  Think about what the conservation of energy theorem says in its strictest form.  It says:
Determine the total mechanical energy in a system (i.e., the sum of the kinetic and
potential energies of all the bodies in the system) as evaluated at a particular point in
time.  Do the same at a second point in time.  The individual kinetic and potential energy
quantities may change over the time interval, but those two SUMS will be the same
UNLESS there is work being done by forces that you can't take into account using
potential energy functions (i.e., forces that are non-conservative--friction, for instance--or
forces that are conservative but for which you don't have potential energy functions).  If
there are no extraneous forces doing work,  ∑ KE1 + ∑ U1 = ∑ KE2 + ∑ U2  and the total

mechanical energy within the system is said to be conserved.

•  If non-conservative forces exist within a system, or if there exist forces that are conservative
but for which you don't have a potential energy function, you can still use the modified
conservation of energy expression.  It says:  The total mechanical energy in a system
evaluated at a particular point in time will be different than the total mechanical energy
evaluated at a later point in time.  The variation will be due to work done by extraneous
forces for which you don't have a potential energy function.  You must either use F.d or

    F • dr∫  for each of those forces to determine that extraneous work.  This is denoted in the
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modified conservation of energy theorem as Wextraneous.  Symbolically, this can be written as

  ∑ KE1 + ∑ U1 + ∑ Wextraneous = ∑ KE2 + ∑ U2 .

•  Gravitational potential energy near the earth's surface can be made zero anywhere only
because the gravitational force near the earth's surface is a constant--it isn't zero
anywhere.  If there had been a preferred zero force position, that would be where Ugrav
would equal zero.

 •  A MINOR POINT about coordinate systems that will become important later:  In a
Cartesian system, -i is a unit vector that is always directed to the left in the negative x
direction.  In a polar spherical coordinate system, on the other hand, a radial unit
vector r always proceeds from the origin out to the point of interest.  That means that a
negative radial vector, characterized as -r, will always be directed inward toward the
origin.  This kind of notation is very useful when dealing with, say, the theoretical
expression for the gravitational force produced by the earth.  In that case, as gravity is
always directed toward the earth's center no matter where you are on the earth, the
gravitational force is conveniently characterized theoretically as being oriented in the
negative radial (i.e., -r)  direction.


